A proposal argues that the moon is actually a pretty decent place to do high-energy physics.
First, it’s cold. Very cold. With no atmosphere and no water, there’s nothing to transport the heat of sunlight from one place to another. At night, with the sun below the horizon, temperatures dip to minus 100 degrees Fahrenheit (minus 73 degrees Celsius) — in the range of typical cryogenic setups on Earth. In the daytime, things get a little bit hotter, reaching more than 100 F (38 C). But as the ice tucked away in the shadows of lunar craters proves, all you need to cool yourself down is a little bit of shade. Again, with no air or water, areas out of direct sunlight are blissfully cold.
Physicists need those cold temperatures for a few reasons. In accelerators, cold temperatures ensure that the superconducting magnets — used to fling the particles inside the accelerator to nearly the speed of light — don’t melt themselves. Second, the hotter a detector, the more noise you have to deal with in trying to tease out the tiny signals from subatomic particles. (More heat equals more molecules vibrating, which equals more noise.)
Besides the chilly temperatures, the fact that the moon has no atmosphere is also a major boon. Physicists have to pull all the air out of their accelerators and detectors — wouldn’t want your near-the-speed-of-light particles to slam into a wandering nitrogen molecule before you even get started. But the moon has a vacuum 10 times better than anything physicists have manufactured in their experiments. And it does it naturally, without any effort at all.
Lastly, because of tidal locking — meaning our satellite body takes the same amount of time to rotate about its axis (its rotational period) as it does to orbit Earth — the moon keeps the same face pointed toward Earth at all times. This means a lunar particle beam could be pointed back toward a detecting laboratory on Earth, taking advantage of the long distance without having to work very hard to align the setup.
LINK: https://www.livescience.com/build-particle-collider-on-moon.html
About Author

Samyak Munot
Samyak is the IT Manager at IYNS. He is currently in Mumbai, pursuing his PhD in Experimental and CFD simulations of ablation behaviour of sacrificial material by molten corium for design of IPWR Core Catcher, from Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai. He is an Applied Nuclear enthusiast and always has time for a good Old School Shayari. Additionally, his interests include Severe Accidents, learning new software, reciting Shayaris and debating.